
JOURNAL OF COMPUTATIONAL PHYSICS 55, 340-345 (1984)

Letter to the Editors

Solving Very Large Elliptic Problems
on a Supercomputer with Solid State Disk

An experiment is described that demonstrates how secondary solid state storage devices
extend effectively the capabilities of supercomputers to solve large computational problems. A
linear system of size 45’ resulting from the 27.point finite difference discretization of a three-
dimensional elliptic operator is solved by a conjugate gradient algorithm on one processor of
a Cray X-MP with attached 8M-word Solid State Disk (SSD). The main matrix was stored on
the SSD. Although for the 8M-word SSD the problem is I/O bound, it is projected that the
32M-word SSD will support the computation at its full measured speed of 161 MFLOPS. It is
concluded that the solution of a 90 X 90 X 90 27.point finite difference problem will require
about 0.25 set per iteration on the Cray X-MP, which will make three-dimensional problems
of reasonable size feasible.

INTRODUCTION

The computational cost of three-dimensional models has placed most such
computations beyond the reach of the most powerful supercomputers. Computational
speed poses one bottleneck; however, often the real bottleneck is the limited memory
size of these machines, typically up to 4 million 64-bit words of fast memory. Super-
computers are slowed down severely when computations have to be performed from
disk, seriously limiting the size of problems that are feasible to solve.

The advent of affordable large MOS memories may ease this bottleneck. Although
MOS memory is not quite as fast as ECL memory that has been used in supercom-
puters so far, memory interleaving and the combination of MOS memories with ECL
memories in a hierarchical fashion can make them very useful for large
computational problems.

The work described in this paper was designed to show that three-dimensional
problems of reasonable size may have indeed come within our reach. Cray Research,
Inc. (CRI) is currently marketing a solid state disk (SSD) as a secondary bulk
storage device for use with its Cray X-MP. The SSD has up to 32 million 64-bit
words and is connected to the main ECL memory of the machine through a dedicated
port and high-speed I/O channel. According to the CR1 hardware specifications, it is
capable of transferring up to 132 Mword/sec. It is our estimate that such a device
should support even linear algebra routines with major arrays stored outside of main
memory at the maximum computational speed of the supercomputer.

One of the most I/O intensive problems is the solution by iterative methods of a
linear system of equations that arise from a finite difference approximation of elliptic

340
002 l-999 l/84 $3.00
Copyright 0 1984 by Academic Press, Inc.
All rights of reproduction in any form reserved.

LETTER TO THE EDITORS 341

partial differential equations if the system is too large to be contained in main
memory. With the main matrix stored on the SSD, only one add and one multiply
operation are performed per transferred word. However, the hardware specifications
indicate that it should be possible to perform suitable relaxation techniques at a rate
approaching 200M floating-point operations per second (MFLOPS) from the SSD.
Furthermore, this processing rate, a 4M-word main memory, and a 32M-word SSD
should permit the relaxation of three-dimensional grids of size nearly 100 X 100 X 100
using a 27-point finite difference approximation in a few tenths of a second per
iteration.

To satisfy ourselves that this conjecture was correct, we designed an experiment
that

(1) measures the computational rate for such an elliptic solver, and

(2) measures the I/O rate in terms of startup (access) and transfer times.

EXPERIMENTAL DESIGN

The model chosen for the experiment is one for solving by iteration a linear system
that arises from a 27-point discretization of a three-dimensional elliptic PDE. We
have chosen for simplicity to solve Laplace’s equation with Dirichlet boundary
conditions. However, no advantage is taken of the fact that it is a separable problem
with constant coefficients. In fact, all nonzero elements of the matrix are stored on
the SSD so that the findings can be applied to a more general operator of 27.point

type.
We use the conjugate gradient algorithm with a polynomial preconditioner [11 to

solve Ax = b, where A is symmetric and positive definite of order n3, and n is the
number of points on one side of the grid cube. The dominant operation is matrix
multiplication, which is used in computing the residual and in the polynomial
evaluation. The matrix A is stored on the SSD, and vectors x, b, and auxiliary vectors
needed for the conjugate gradient algorithm are kept in the main memory. To overlap
the computation with I/O operations, we use two I/O buffers in main memory in the
following way: while the CPU draws operands for its computations from one of them
(the COMPUTE buffer), new data are being read from the SSD into the other one
(the READ buffer). This transfer operation does not require the services of the CPU
except for startup. Buffers are switched cyclically after the current READ and
COMPUTE buffers have been processed.

The matrix A is stored in blocks of k rows of A containing the 27 diagonals in a
(k, 27) array. The matrix multiplication is carried out as multiplication by diagonals,
that is

13

y = \‘ a,X,,
113

where the main diagonal is labeled ao. The diagonals of A below (above) the main
diagonal are labeled with negative (positive) indices in decreasing (increasing) order

342 BUCHERANDJORDAN

away from the main diagonal. The X, denote the appropriate subsets of X. The
computational vector length is k and the I/O vector length is 27k.

The matrix multiplication begins with a non-overlapped I/O operation, to fill the
initial buffer, and ends with a non-overlapped computation involving the last k rows
of the matrix. In between, the following set of operations is performed repetitively: an
I/O startup followed by overlapped data transfer and computation on k rows. Except
for small corrections for beginning and end, the total time for the matrix multiply will
be the sum of I/O overhead time and the larger of the two times required for data
transfer and computation.

For an 8M-word SSD the data transfer is expected to take more time than the
computation. With 53 floating-point operations per row, we expect the following
times for the matrix multiplication:

Wall Clock: t,. = N ’ t, + 27 ’ n’/R,

User CPU: t, = 53 . n”,fR,

System CPU: t, = N . t,

where N is the number of I/O requests, t, the I/O overhead time per request. n3 the
size of the matrix, R, the SSD transfer rate in words/set, and R, the computational
rate in FLOPS.

For a 32M-word SSD, which contains four times as many memory banks as the
8M-word SSD and is therefore four times faster, the computations are expected to
take more time than the data transfer. Therefore the wall clock time for the matrix
multiply should be given by

t,. = N. t, + 53 . n”/R,,

with user and system CPU times the same as those for the SM-word SSD.
An upper bound of the compute rate R, for the matrix multiply can be obtained by

considering that two loads, a multiply, and an add for a vector length of 64 can be
repeated at intervals of 75 cycles if one vector register is used repeatedly in each add
operation [2]. Seventy-five cycles with a cycle time of 9.5 nsec for 128 floating point
operations correspond to a computational rate of 180 MFLOPS. However, the actual
rate will be lower because of less than optimal scheduling by the compiler, setup
times for the outer vector loops, and subroutine calls.

RESULTS

Only an 8M-word SSD was available at the time of our experiment. In addition,
we were limited to 1M words of main memory on the Cray X-MP. Table I gives a
portion of the raw timing data obtained by running the polynomial conjugate gradient
algorithm for a matrix of size 45j, polynomial degree 1 to an accuracy of approx-

LETTER TO THE EDITORS 343

TABLE I

Polynomial Conjugate Gradient Solver Timings (in Seconds) and Effective Execution
Rates (in MFLOPS) on Cray X-MP with Matrix Stored on 8M-Word SSD”

I/O Buffer Size (words) 21. 1024 27.2048 21.4096
Number of I/O Requests 7832 3960 2024

Measured times for
total algorithm

Wall clock

User CPU

12.2 set 10.1 set
43 MFLOPS 52 MFLOPS
3SOsec 3.39 set
15 1 MFLOPS I56 MFLOPS

9.09 set
58 MFLOPS
3.33 set
159 MFLOPS

Measured times for
matrix multiply only

Wall clock

User CPU

11.54 set
31 MFLOPS
2.70 set
157 MFLOPS

9.41 set
45 MFLOPS
2.66 set
160 MFLOPS

8.45 set
50 MFLOPS
2.64 set
161 MFLOPS

Inferred times
System CPU time 4.5lsec 2.3 1 set 1.18 set
I/O transfer time 6.97 set 7.04 set 1.20sec

‘Matrix size: 45’, maximum error: 1.3 x lo-‘, number of iterations: 87, polynomial degree: I.
number of matrix multiplies: 88.

imately lo-’ on one processor of the Cray X-MP. These runs involved 87 iterations
and 88 matrix multiplies each. Values of k = 1024, 2048, and 4096, respectively,
were used for the I/O buffer sizes in this experiment. The program was written in
Fortran. The computational rate for the matrix multiply is 161 MFLOPS for the
largest buffer size, about 10% lower than the optimal rate. This was achieved by
inserting parentheses to force the compiler to sequence multiplies and adds correctly.

It is evident that for the 8M-word SSD the matrix multiply is I/O bound, as
expected. The wall clock time for the matrix multiply minus the time for the last non-
overlapped computation is a linear function of the number of I/O requests. The slope
corresponds to an I/O overhead time of 583psec per I/O startup, comparable to
overhead times measured for disk operations.

The time needed for the actual data transfer is 7.20 set and corresponds to an SSD
transfer rate R, of 31.1M word/set, about 3% lower than the measured rate of
32.1M word/set without overlapped vector computations. This reduction in the
transfer rate might be due to memory bank conflicts.

Using the above data, it is not difficult to estimate the run times of the conjugate
gradient algorithm for a full-size SSD of 32M words. Because the matrix multiply
will be compute bound, the user will not have to give up the CPU between I/O
operations. This usually implies less overhead time. We measured 410 psec per read

344 BUCHER AND JORDAN

TABLE II

Polynomial Conjugate Gradient Solver Timings (in Seconds) and Effective Execution
Rates (in MFLOPS) on Cray X-MP with Matrix Stored on 32M-Word SSD”

I/O Buffer Size (words) 27. 1024 27 2048 27 4096
Number of I/O Requests 7832 3960 2024

Projected times for
total algorithm

Wall clock

User CPU

Projected times for
matrix multiply only

Wall clock

User CPU

Inferred times
System CPU time
I/O transfer time

6.57 set
80 MFLOPS
3.50 set
15 1 MFLOPS

5.93 set
72 MFLOPS
2.70 set
157 MFLOPS

3.21 set
1.74 set

4.96 set
106 MFLOPS
3.39 set
156 MFLOPS

4.32 set
98 MFLOPS
2.66 set
160 MFLOPS

I .62 set
1.76 set

4.19 set
126 MFLOPS
3.33 set
159 MFLOPS

3.55 set
119 MFLOPS
2.64 set
161 MFLOPS

0.83 set
1.80 set

“Matrix size: 45’. maximum error: 1.3 x 10 ‘. number of iterations: 87, polynomial degree: I.
number of matrix multiplies: 88.

request in a separate experiment. Assuming that the data transfer proceeds at four
times the measured rate of an 8M-word SSD and that overhead times are the same,
we projected the execution times shown in Table II. It is evident that for the 32M-
word SSD, the speed of both computation and data transfer make large I/O buffers
mandatory to avoid excessive delays by I/O overhead. For the largest buffers chosen,
the overall rate, including I/O, would be 126 MFLOPS.

If both processors of the Cray X-MP are used to perform the computations, an
experiment we plan for the near future, the matrix multiplication will again become
I/O bound.

For comparison, we ran the same experiment with the main matrix stored on disk.
The total runtime of the linear solver was 453 set, corresponding to a net
computational rate of 0.9 MFLOPS for the matrix multiply. The disk-bound
computation is therefore more than 50 times slower than the computation with the
matrix on an 8M-word SSD.

CONCLUSIONS

Our experiment demonstrated that an 8M-word SSD attached to a Cray X-MP as
a user-accessible, secondary storage device could support at a rate of 58 MFLOPS

LETTERTOTHE EDITORS 345

the solution of a large linear system by a conjugate gradient method with the main
matrix stored on the SSD. Although, the computation proceeded at a rate of
161 MFLOPS, I/O slowed it down by a factor of 3 to 4. Our projections show that a
32M-word SSD will support this and similar computations at close to full speed.

It would be helpful to reduce I/O overhead times for the SSD to avoid the need for
very large I/O buffers.

If I/O overhead times can be reduced to a small fraction of the times required for
the computations, then an estimate for an iteration on a 90 x 90 x 90 grid would be
(8 . 2.64/88) set, or approximately one quarter of a second. This may translate into a
few seconds to solve such a system to a few digits of accuracy. These results

constitute a speedup by a factor of about 200 compared with computations performed
from disk, and demonstrate the great usefulness of MOS memory devices for large-
scale computations.

ACKNOWLEDGMENTS

We wish to thank David Slowinski of Cray Research, Inc., for writing the asynchronous I/O routines
for the SSD for us and for his valuable advice during the course of this experiment.

REFERENCES

1. T. L. JORDAN, Conjugate gradient preconditioners for vector and parallel processors, in “Proceedings.
Monterey Conference on Elliptic Problem Solvers,” Academic Press, New York, 1983, in press.

2. Cray X-MP Series Mainframe Reference Manual, CR1 publication HR-0032, Cray Research. Inc.,
1982.

RECEIVED: June 22, 1983; REVISED: September 27, 1983
INGRID Y. BUCHER

THOMAS L. JORDAN

Los Alamos National Laboratory.
Los Alamos. New Mexico 87545

