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Letter to the Editors 

Solving Very Large Elliptic Problems 
on a Supercomputer with Solid State Disk 

An experiment is described that demonstrates how secondary solid state storage devices 
extend effectively the capabilities of supercomputers to solve large computational problems. A 
linear system of size 45’ resulting from the 27.point finite difference discretization of a three- 
dimensional elliptic operator is solved by a conjugate gradient algorithm on one processor of 
a Cray X-MP with attached 8M-word Solid State Disk (SSD). The main matrix was stored on 
the SSD. Although for the 8M-word SSD the problem is I/O bound, it is projected that the 
32M-word SSD will support the computation at its full measured speed of 161 MFLOPS. It is 
concluded that the solution of a 90 X 90 X 90 27.point finite difference problem will require 
about 0.25 set per iteration on the Cray X-MP, which will make three-dimensional problems 
of reasonable size feasible. 

INTRODUCTION 

The computational cost of three-dimensional models has placed most such 
computations beyond the reach of the most powerful supercomputers. Computational 
speed poses one bottleneck; however, often the real bottleneck is the limited memory 
size of these machines, typically up to 4 million 64-bit words of fast memory. Super- 
computers are slowed down severely when computations have to be performed from 
disk, seriously limiting the size of problems that are feasible to solve. 

The advent of affordable large MOS memories may ease this bottleneck. Although 
MOS memory is not quite as fast as ECL memory that has been used in supercom- 
puters so far, memory interleaving and the combination of MOS memories with ECL 
memories in a hierarchical fashion can make them very useful for large 
computational problems. 

The work described in this paper was designed to show that three-dimensional 
problems of reasonable size may have indeed come within our reach. Cray Research, 
Inc. (CRI) is currently marketing a solid state disk (SSD) as a secondary bulk 
storage device for use with its Cray X-MP. The SSD has up to 32 million 64-bit 
words and is connected to the main ECL memory of the machine through a dedicated 
port and high-speed I/O channel. According to the CR1 hardware specifications, it is 
capable of transferring up to 132 Mword/sec. It is our estimate that such a device 
should support even linear algebra routines with major arrays stored outside of main 
memory at the maximum computational speed of the supercomputer. 

One of the most I/O intensive problems is the solution by iterative methods of a 
linear system of equations that arise from a finite difference approximation of elliptic 
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partial differential equations if the system is too large to be contained in main 
memory. With the main matrix stored on the SSD, only one add and one multiply 
operation are performed per transferred word. However, the hardware specifications 
indicate that it should be possible to perform suitable relaxation techniques at a rate 
approaching 200M floating-point operations per second (MFLOPS) from the SSD. 
Furthermore, this processing rate, a 4M-word main memory, and a 32M-word SSD 
should permit the relaxation of three-dimensional grids of size nearly 100 X 100 X 100 
using a 27-point finite difference approximation in a few tenths of a second per 
iteration. 

To satisfy ourselves that this conjecture was correct, we designed an experiment 
that 

(1) measures the computational rate for such an elliptic solver, and 

(2) measures the I/O rate in terms of startup (access) and transfer times. 

EXPERIMENTAL DESIGN 

The model chosen for the experiment is one for solving by iteration a linear system 
that arises from a 27-point discretization of a three-dimensional elliptic PDE. We 
have chosen for simplicity to solve Laplace’s equation with Dirichlet boundary 
conditions. However, no advantage is taken of the fact that it is a separable problem 
with constant coefficients. In fact, all nonzero elements of the matrix are stored on 
the SSD so that the findings can be applied to a more general operator of 27.point 

type. 
We use the conjugate gradient algorithm with a polynomial preconditioner [ 11 to 

solve Ax = b, where A is symmetric and positive definite of order n3, and n is the 
number of points on one side of the grid cube. The dominant operation is matrix 
multiplication, which is used in computing the residual and in the polynomial 
evaluation. The matrix A is stored on the SSD, and vectors x, b, and auxiliary vectors 
needed for the conjugate gradient algorithm are kept in the main memory. To overlap 
the computation with I/O operations, we use two I/O buffers in main memory in the 
following way: while the CPU draws operands for its computations from one of them 
(the COMPUTE buffer), new data are being read from the SSD into the other one 
(the READ buffer). This transfer operation does not require the services of the CPU 
except for startup. Buffers are switched cyclically after the current READ and 
COMPUTE buffers have been processed. 

The matrix A is stored in blocks of k rows of A containing the 27 diagonals in a 
(k, 27) array. The matrix multiplication is carried out as multiplication by diagonals, 
that is 

13 

y = \‘ a,X,, 
113 

where the main diagonal is labeled ao. The diagonals of A below (above) the main 
diagonal are labeled with negative (positive) indices in decreasing (increasing) order 
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away from the main diagonal. The X, denote the appropriate subsets of X. The 
computational vector length is k and the I/O vector length is 27k. 

The matrix multiplication begins with a non-overlapped I/O operation, to fill the 
initial buffer, and ends with a non-overlapped computation involving the last k rows 
of the matrix. In between, the following set of operations is performed repetitively: an 
I/O startup followed by overlapped data transfer and computation on k rows. Except 
for small corrections for beginning and end, the total time for the matrix multiply will 
be the sum of I/O overhead time and the larger of the two times required for data 
transfer and computation. 

For an 8M-word SSD the data transfer is expected to take more time than the 
computation. With 53 floating-point operations per row, we expect the following 
times for the matrix multiplication: 

Wall Clock: t,. = N ’ t, + 27 ’ n’/R, 

User CPU: t, = 53 . n”,fR, 

System CPU: t, = N . t, 

where N is the number of I/O requests, t, the I/O overhead time per request. n3 the 
size of the matrix, R, the SSD transfer rate in words/set, and R, the computational 
rate in FLOPS. 

For a 32M-word SSD, which contains four times as many memory banks as the 
8M-word SSD and is therefore four times faster, the computations are expected to 
take more time than the data transfer. Therefore the wall clock time for the matrix 
multiply should be given by 

t,. = N. t, + 53 . n”/R,, 

with user and system CPU times the same as those for the SM-word SSD. 
An upper bound of the compute rate R, for the matrix multiply can be obtained by 

considering that two loads, a multiply, and an add for a vector length of 64 can be 
repeated at intervals of 75 cycles if one vector register is used repeatedly in each add 
operation [2]. Seventy-five cycles with a cycle time of 9.5 nsec for 128 floating point 
operations correspond to a computational rate of 180 MFLOPS. However, the actual 
rate will be lower because of less than optimal scheduling by the compiler, setup 
times for the outer vector loops, and subroutine calls. 

RESULTS 

Only an 8M-word SSD was available at the time of our experiment. In addition, 
we were limited to 1M words of main memory on the Cray X-MP. Table I gives a 
portion of the raw timing data obtained by running the polynomial conjugate gradient 
algorithm for a matrix of size 45j, polynomial degree 1 to an accuracy of approx- 
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TABLE I 

Polynomial Conjugate Gradient Solver Timings (in Seconds) and Effective Execution 
Rates (in MFLOPS) on Cray X-MP with Matrix Stored on 8M-Word SSD” 

I/O Buffer Size (words) 21. 1024 27.2048 21.4096 
Number of I/O Requests 7832 3960 2024 

Measured times for 
total algorithm 

Wall clock 

User CPU 

12.2 set 10.1 set 
43 MFLOPS 52 MFLOPS 
3SOsec 3.39 set 
15 1 MFLOPS I56 MFLOPS 

9.09 set 
58 MFLOPS 
3.33 set 
159 MFLOPS 

Measured times for 
matrix multiply only 

Wall clock 

User CPU 

11.54 set 
31 MFLOPS 
2.70 set 
157 MFLOPS 

9.41 set 
45 MFLOPS 
2.66 set 
160 MFLOPS 

8.45 set 
50 MFLOPS 
2.64 set 
161 MFLOPS 

Inferred times 
System CPU time 4.5lsec 2.3 1 set 1.18 set 
I/O transfer time 6.97 set 7.04 set 1.20sec 

‘Matrix size: 45’, maximum error: 1.3 x lo-‘, number of iterations: 87, polynomial degree: I. 
number of matrix multiplies: 88. 

imately lo-’ on one processor of the Cray X-MP. These runs involved 87 iterations 
and 88 matrix multiplies each. Values of k = 1024, 2048, and 4096, respectively, 
were used for the I/O buffer sizes in this experiment. The program was written in 
Fortran. The computational rate for the matrix multiply is 161 MFLOPS for the 
largest buffer size, about 10% lower than the optimal rate. This was achieved by 
inserting parentheses to force the compiler to sequence multiplies and adds correctly. 

It is evident that for the 8M-word SSD the matrix multiply is I/O bound, as 
expected. The wall clock time for the matrix multiply minus the time for the last non- 
overlapped computation is a linear function of the number of I/O requests. The slope 
corresponds to an I/O overhead time of 583psec per I/O startup, comparable to 
overhead times measured for disk operations. 

The time needed for the actual data transfer is 7.20 set and corresponds to an SSD 
transfer rate R, of 31.1M word/set, about 3% lower than the measured rate of 
32.1M word/set without overlapped vector computations. This reduction in the 
transfer rate might be due to memory bank conflicts. 

Using the above data, it is not difficult to estimate the run times of the conjugate 
gradient algorithm for a full-size SSD of 32M words. Because the matrix multiply 
will be compute bound, the user will not have to give up the CPU between I/O 
operations. This usually implies less overhead time. We measured 410 psec per read 
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TABLE II 

Polynomial Conjugate Gradient Solver Timings (in Seconds) and Effective Execution 
Rates (in MFLOPS) on Cray X-MP with Matrix Stored on 32M-Word SSD” 

I/O Buffer Size (words) 27. 1024 27 2048 27 4096 
Number of I/O Requests 7832 3960 2024 

Projected times for 
total algorithm 

Wall clock 

User CPU 

Projected times for 
matrix multiply only 

Wall clock 

User CPU 

Inferred times 
System CPU time 
I/O transfer time 

6.57 set 
80 MFLOPS 
3.50 set 
15 1 MFLOPS 

5.93 set 
72 MFLOPS 
2.70 set 
157 MFLOPS 

3.21 set 
1.74 set 

4.96 set 
106 MFLOPS 
3.39 set 
156 MFLOPS 

4.32 set 
98 MFLOPS 
2.66 set 
160 MFLOPS 

I .62 set 
1.76 set 

4.19 set 
126 MFLOPS 
3.33 set 
159 MFLOPS 

3.55 set 
119 MFLOPS 
2.64 set 
161 MFLOPS 

0.83 set 
1.80 set 

“Matrix size: 45’. maximum error: 1.3 x 10 ‘. number of iterations: 87, polynomial degree: I. 
number of matrix multiplies: 88. 

request in a separate experiment. Assuming that the data transfer proceeds at four 
times the measured rate of an 8M-word SSD and that overhead times are the same, 
we projected the execution times shown in Table II. It is evident that for the 32M- 
word SSD, the speed of both computation and data transfer make large I/O buffers 
mandatory to avoid excessive delays by I/O overhead. For the largest buffers chosen, 
the overall rate, including I/O, would be 126 MFLOPS. 

If both processors of the Cray X-MP are used to perform the computations, an 
experiment we plan for the near future, the matrix multiplication will again become 
I/O bound. 

For comparison, we ran the same experiment with the main matrix stored on disk. 
The total runtime of the linear solver was 453 set, corresponding to a net 
computational rate of 0.9 MFLOPS for the matrix multiply. The disk-bound 
computation is therefore more than 50 times slower than the computation with the 
matrix on an 8M-word SSD. 

CONCLUSIONS 

Our experiment demonstrated that an 8M-word SSD attached to a Cray X-MP as 
a user-accessible, secondary storage device could support at a rate of 58 MFLOPS 
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the solution of a large linear system by a conjugate gradient method with the main 
matrix stored on the SSD. Although, the computation proceeded at a rate of 
161 MFLOPS, I/O slowed it down by a factor of 3 to 4. Our projections show that a 
32M-word SSD will support this and similar computations at close to full speed. 

It would be helpful to reduce I/O overhead times for the SSD to avoid the need for 
very large I/O buffers. 

If I/O overhead times can be reduced to a small fraction of the times required for 
the computations, then an estimate for an iteration on a 90 x 90 x 90 grid would be 
(8 . 2.64/88) set, or approximately one quarter of a second. This may translate into a 
few seconds to solve such a system to a few digits of accuracy. These results 

constitute a speedup by a factor of about 200 compared with computations performed 
from disk, and demonstrate the great usefulness of MOS memory devices for large- 
scale computations. 
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